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Abstract
A recently developed relativistic multireference many-body perturbation theory based on
multireference configuration-interaction wavefunctions as zeroth-order wavefunctions is
outlined. The perturbation theory employs a general class of configuration-interaction
wavefunctions as reference functions, and thus is applicable to multiple open valence shell
systems with near degeneracy of a manifold of strongly interacting configurations.
Multireference many-body perturbation calculations are reported for the ground and excited
states of chlorinelike Fe X in which the near degeneracy of a manifold of strongly interacting
configurations mandates a multireference treatment. Term energies of a total of 83 excited
levels arising from the 3s23p5, 3s3p6, 3s23p43d, 3s3p53d, and 3s23p33d2 configurations of the
ion are evaluated to high accuracy. Transition rates associated with E1/M1/E2/M2/E3
radiative decays and lifetimes of a number of excited levels are calculated and compared with
laboratory measurements to critically evaluate recent experiments.

1. Introduction

Since important physical and chemical processes involve
heavy atoms and highly ionized ions, there has been increasing
interest in the development of relativistic many-body theories
[1–25] for an accurate description of spectroscopic properties.
Because relativistic and correlation effects are intertwined
and play an essential role in the electronic structure and
spectroscopic properties of many-electron systems, relativistic
many-body perturbation theory (MBPT) and relativistic
coupled cluster (CC) theory have become the subject of active
research interest.

An important feature in the many-body algorithm is the
highly correlated state-specific many-electron wavefunctions
that accurately account for relativity and for nondynamic as

well as dynamic correlation energy corrections arising from
the effective electron–electron interaction—the instantaneous
Coulomb and Breit interactions–in addition to the QED
corrections.

During the past decades, most relativistic atomic structure
calculations have been carried out by either finite-difference
multiconfiguration (MC) Dirac–Fock self-consistent field
(DF SCF) [26–29], relativistic configuration interaction
(CI) [9, 30] or relativistic many-body perturbation theory
(MBPT) based on single-configuration DF SCF wavefunctions
expanded in analytic basis sets [31, 32]. Each of these
methods has strengths and weaknesses because their accuracy
is restricted to different sectors of many-electron correlation.
The inability of MC DF SCF and relativistic CI methods to
make quantitative predictions in agreement with experiment
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[33] is well understood: these methods are most effective
in treating nondynamic correlation (i.e. near-degeneracy in
the valence shells), but fail to account for the bulk of
dynamic correlation [21]. The single-reference MBPT has
exactly the opposite characteristic; it is effective in accurately
describing dynamic correlation, but fails to account for
nondynamic correlation. Dynamic correlation is a short-range
effect that arises from electron–electron interaction and is
the major correction to the Dirac–Fock independent particle
model, while nondynamic correlation is a consequence of
the existence of nearly degenerate excited states that interact
strongly with the reference state [11, 19, 21]. Near degeneracy
in the valence spinors gives rise to a manifold of strongly
interacting configurations, i.e. strong configuration mixing
within a relativistic complex [24], and makes a MC treatment
mandatory. The classic examples in atomic physics are the
near-degeneracy effects in ground-state alkaline-earth metals
[17] and open-shell atoms with two or more valence-shell
electrons [8, 19, 24, 25].

Once the near-degeneracy effects are accounted for
by matrix MC DF SCF or relativistic CI along with the
QED effects [34], the remaining dynamic correlation may
be recovered by a relativistic multireference(MR)-MBPT
[19, 21, 24], MR-CC [7] or MR-CI based on the MC reference
functions [9, 35]. The relativistic MR-CI approach [9, 35],
however, becomes quickly unwieldy in systems with large
numbers of electrons, because the order of the MR-CI matrix
increases rapidly as the number of electrons increases. Once
the nondynamic correlation among valence electrons is treated,
the remaining correlation may be recovered by second-order
perturbation theory because it consists mainly of dynamic pair
correlation due to short-range fluctuation potentials.

In recent studies [19, 21, 24], we have developed a
relativistic MR-MBPT algorithm that combines the strengths
of both relativistic CI and many-body perturbation methods
and which yields highly accurate term energies for open-shell
systems with multiple valence-shell electrons. The relativistic
MR-MBPT, which underpins the electron correlation in
strongly interacting many-electron systems, is the outstanding
example of a successful many-body theory, one which predicts
with high precision the outcome of spectroscopic experiments.
The MR-MBPT perturbation calculations reported for the
ground and low-lying odd- and even-parity excited states
of Al-, Si- and S-like ions [19, 21, 24] have demonstrated
unprecedented accuracy for systems with multiple valence
electrons.

In the present study, we outline a procedure by which to
perform the recently developed relativistic MR-MBPT theory
[21, 24] in application to a general class of strongly correlated
quasidegenerate systems. The essential feature of the
theory is its underpinning of correlation corrections through
treatment of the nondynamic correlation in zero order through
quadratically convergent matrix multiconfiguration Dirac–
Fock–Breit self-consistent field (MCDFB SCF) followed
by relativistic CI [21, 24], and recovery of the remaining
correlation, which is predominantly dynamic pair correlation,
by second-order MR-MBPT theory. The relativistic MR-
MBPT calculations reported in this study for the ground

and low-lying odd- and even-parity excited states of
chlorinelike iron demonstrate unprecedented accuracy for
strongly correlated systems with multiple valence-shell
electrons. Highly accurate term values for all the excited
states arising from the 3s23p5, 3s3p6, 3s23p43d, 3s3p53d, and
3s23p33d2 configurations, including the poorly determined
levels arising from the 3s23p43d, 3s3p53d, and 3s23p33d2

configurations, are reported. Theoretical E1/M1/E2/M2/E3
decay rates and lifetimes of the excited levels arising from
the 3s23p5, 3s3p6, 3s23p43d configurations are computed to
compare with and critically evaluate recent experiments.

2. Relativistic MR-MBPT calculations

The effective N-electron Hamiltonian for the development
of our relativistic MR-MBPT algorithm is taken to
be the relativistic ‘no-pair’ Dirac–Coulomb–Breit (DCB)
Hamiltonian H +

DCB [36, 37]. The initial step in our MR-
MBPT procedure is to determine a set of Dirac spinors via
the MCDFB SCF for the subsequent many-body description
of many-electron systems. Second-order variation of the state-
averaged energy is taken with respect to the matrix elements
of a spinor unitary rotation matrix and configuration mixing
coefficients in the MCDFB SCF wavefunction, leading to the
Newton–Raphson equations for second-order MCDFB SCF
[35]. This state-averaged second-order MCDFB equation
yields a well-balanced set of spinors suitable for describing
the ground and low-lying even- and odd-parity excited levels
[21].

For the chlorinelike ions, the state-averaged MCDFB SCF
includes a total of 31 configuration-state functions (CSF) of
even- and odd-parity π with total angular momentum J =
1/2–9/2,

{
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, arising from the 3s23p5,

3s3p6, and 3s23p43d configurations, to determine a single set
of spinors for the MR-CI and MR-MBPT calculations that
follow. The key to a high-accuracy algorithm for multi-
valence-electron systems is the determination of a single set of
spinors via the state-averaged MC DFB SCF, which provides
a well-balanced description of the ground and excited levels.

In order to account for nondynamic correlation, or strong
configuration mixing among the quasi-degenerate open-shell
states, the MR-CI for the ground and low-lying excited
J = 1/2–11/2 states in the chlorinelike ions were
subsequently carried out including a total of 3097 (1538 even-
and 1559 odd-parity) CSFs arising from the configurations
3sm3pn3dp, with m + n + p = 7 and p � 4. Variation
of the configuration-state coefficients {CIK} leads to the
determinantal CI equation:
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The eigenfunctions
{
ψCI

K (γKJπ)
}

are multideterminantal
wavefunctions, obtained by diagonalizing the DCB
Hamiltonian within the CI subspace P

(+)
CI of the positive-

energy space D(+) in a given set of CSFs
{
�

(+)
I (γIJπ)

}
.

The MR-CI accounts for the near degeneracy in energy
levels, or nondynamic correlation, inherent in multi-valence-
electron systems. The frequency-dependent Breit interaction
(�B(ω)), normal mass shift (NMS) and specific mass shift
(SMS) are evaluated at this stage as the first-order corrections
using the eigenvectors

{
ψCI

K (γKJπ)
}

from the MR-CI [21].
While the MR-CI accounts well for the near degeneracy in

energy, it fails to accurately account for dynamic correlation.
Therefore, each of the CI eigenstates is subjected to state-
specific MR-MBPT refinement to account for the residual
dynamic correlation to second-order of perturbation theory,
using the multideterminantal CI eigenfunctions

{
ψCI

K (γKJπ)
}

as the zero-order reference function:

E
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E
(2)
K represents the residual dynamic correlation—the

dynamic correlation between the core and valence electrons
unaccounted for in the MR-CI—to second order of
perturbation theory. R is the resolvent operator:

R = Q(+)

ECSF
K − H0

with

Q(+) =
Q(+)∑
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The projection operator Q(+) projects onto the subspace
Q(+) = D(+) − P

(+)
CI spanned by CSFs

{
�

(+)
I (γIJπ); I =

MCI + 1,MCI + 2, . . .
}
.

Each of the 3097 CI eigenstates was subjected to state-
specific MR-MBPT refinement to account for the residual
dynamic correlation to second order of perturbation theory
[19, 21, 24]. All electrons are included in the MR-MBPT
perturbation theory calculations to determine accurately the
valence-core correlation as well as the effects of relativity on
electron correlation.

Radiative corrections, the Lamb shifts (LS), were
estimated for each state by evaluating the electron self-energy
and vacuum polarization following an approximation scheme
discussed by Indelicato, Gorceix and Desclaux [38]. The code
described in [38, 39] was adapted to our basis set expansion
calculations for this purpose: all the necessary radial integrals
were evaluated analytically. In this ratio method [39], the
screening of the self-energy is estimated by integrating the
charge density of a spinor to a short distance from the origin,
typically 0.3 Compton wavelength. The ratio of the integral
computed with an MCDFB SCF spinor and that obtained from
the corresponding hydrogenic spinor is used to scale the self-
energy correction for a bare nuclear charge as computed by
Mohr [40].

The large and small radial components of the Dirac spinors
are expanded in sets of even-tempered Gaussian-type functions

(GTF) [41, 42] that satisfy the boundary conditions associated
with the finite nucleus [43, 44]. The speed of light is taken to be
137.035 9895 au throughout this study. The GTFs that satisfy
the boundary conditions associated with the finite nucleus are
automatically kinetically balanced [43]. Even-tempered basis
sets (α = 0.10 and β = 2.0) of 26s24p20d G spinors (G for
‘Gaussian’) for up to angular momentum L = 2, 18 G spinors
for L = 3, and 15 G spinors for L = 4–11 are employed. The
order of the partial-wave expansion Lmax, the highest angular
momentum of the spinors included in the virtual space, is
Lmax = 11 throughout this study. MR-MBPT correlation
energy contributions to transition energies from partial wave
L = 12 and higher are on the order of 10 cm−1. The nuclei
were simulated as spheres of uniform proton charge [43] with
the radii R(Bohr) = 2.2677×10−5A1/3, where A is the atomic
mass (amu).

3. Transition probabilities

Recent relativistic many-body perturbation theory studies by
Johnson et al [45] on heliumlike ions have laid the foundation
for high-accuracy calculations of reduced matrix elements and
transition rates in one- and two-valence electron systems and
demonstrated the capacity of theoretical methods to predict E1
and M1 transition rates accurately. In the present study, we
have employed our first-order MR-MBPT wavefunctions to
evaluate the transition rates in the Babushkin gauge, including
the negative-energy space.

The first-order transition amplitude for high-accuracy
calculations of transition rates is expressed in terms of CSFs:
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Summation L over intermediate states �
(+,−)
L includes both the

positive-(Q(+)) and negative-(Q(−)) energy subspaces [45].
With the summation extended to negative-energy subspace, E1
and E2 transition probabilities computed in the Coulomb gauge
approache the value computed in the Babushkin gauge. The
corrections arising from approximate photon frequency may
be eliminated semiempirically using experimental transition
energies. In the present study, transition energies (and photon
frequencies ω(0+1+2)) calculated by MR-MBPT second-order
perturbation theory are close to the experimental values, and
the terms arising from corrections to the photon frequency
δω = ωexp t − ω(0+1+2) in both zero- and first-order transition
amplitudes are significantly smaller and may be neglected.

Because of strong coupling between the large and small
components of the Dirac 4-spinors in the transition matrix
elements, particularly E2 transition probabilities evaluated
by excluding the negative-energy space in the Coulomb
gauge are inaccurate and deviate from the values evaluated
in the Babushkin gauge. When contributions from the
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Table 1. Comparison of MR-MBPT calculated term energies (in cm−1) (this work) with experiment [46, 47] and with other theory [65]. The
numbers in parentheses indicate the deviation (in percent) from our calculated results.

Configuration Term MR-MP2 NIST Del Zanna et al Aggarwal et al

1 3s23p5 2Po
3/2 0 0 0 0

2 3s23p5 2Po
1/2 15 683 15 683(0.00) 15 683(0.00) 15 649(−0.22)

3 3s3p6 2S1/2 288 932 289 249(+0.11) 289 236(+0.11) 285 580(−1.16)
4 3s23p4(3P)3d 4D7/2 388 814 388 709(−0.03) 388 708(+0.03) 389 216(+0.10)
5 3s23p4(3P)3d 4D5/2 388 832 388 709(−0.03) 388 714(−0.03) 389 271(+0.11)
6 3s23p4(3P)3d 4D3/2 390 080 390 050(−0.01) 390 019(−0.02) 390 522(+0.11)
7 3s23p4(3P)3d 4D1/2 391 617 391 555(−0.02) 391 557(−0.02) 392 023(+0.10)
8 3s23p4(3P)3d 4F9/2 417 763 417 653(−0.03) 417 652(−0.03) 421 468(+0.89)
9 3s23p4(1D)3d 2P1/2 419 904 414 249(−1.35) 423 674(+0.90)

10 3s23p4(3P)3d 4F7/2 422 918 422 795(−0.03) 422 785(−0.03) 426 615(+0.87)
11 3s23p4(3P)3d 4F5/2 426 814 426 763(−0.01) 426 260(−0.13) 430 390(+0.84)
12 3s23p4(3P)3d 4F3/2 428 088 428 298(+0.05) 427 604(−0.11) 431 761(+0.86)
13 3s23p4(1D)3d 2P3/2 428 432 431 928(+0.81) 422 844(−1.30) 432 091(+0.85)
14 3s23p4(1D)3d 2D3/2 434 821 434 614(−0.05) 433 088(−0.40) 438 313(+0.80)
15 3s23p4(3P)3d 4P1/2 435 062 434 800(−0.06) 433 526(−0.35) 438 861(+0.87)
16 3s23p4(3P)3d 4P3/2 439 981 438 168(−0.41) 443 723(+0.85)
17 3s23p4(3P)3d 2F7/2 440 881 440 840(−0.01) 440 839(−0.01) 446 806(+1.34)
18 3s23p4(3P)3d 4P5/2 442 110 441 853(−0.06) 440 125(−0.45) 445 698(+0.81)
19 3s23p4(1D)3d 2D5/2 444 377 442 760(−0.36) 448 123(+0.84)
20 3s23p4(1D)3d 2G9/2 450 859 450 751(−0.02) 450 754(−0.02) 456 639(+1.28)
21 3s23p4(1D)3d 2G7/2 451 182 451 084(−0.02) 451 083(−0.02) 457 166(+1.33)
22 3s23p4(3P)3d 2F5/2 454 059 452 730(−0.29) 454 036(−0.01) 460 183(+1.35)
23 3s23p4(1D)3d 2F5/2 482 238 476 699(−1.15) 482 046(−0.04) 490 131(+1.64)
24 3s23p4(1D)3d 2F7/2 486 162 485 983(−0.04) 485 982(−0.04) 494 037(+1.62)
25 3s23p4(1S)3d 2D3/2 511 975 511 800(−0.03) 511 992(+0.00) 518 432(+1.26)
26 3s23p4(1S)3d 2D5/2 516 374 516 222(−0.03) 522 547(+1.20)
27 3s23p4(1D)3d 2S1/2 542 316 541 879(−0.08) 541 897(−0.08) 551 189(+1.64)
28 3s23p4(3P)3d 2P3/2 564 980 564 198(−0.14) 564 208(−0.14) 578 612(+2.41)
29 3s23p4(3P)3d 2P1/2 570 654 569 985(−0.12) 569 882(−0.14) 584 274(+2.39)
30 3s23p4(3P)3d 2D5/2 573 699 572 954(−0.13) 572 964(−0.13) 586 304(+2.20)
31 3s23p4(3P)3d 2D3/2 586 963 586 244(−0.12) 586 254(−0.12) 599 528(+2.14)
32 3s3p5(3P)3d 4Po

1/2 666 185 661 175(−0.75) 683 137(+2.54)
33 3s3p5(3P)3d 4Po

3/2 668 722 663 782(−0.74) 685 694(+2.54)
34 3s3p5(3P)3d 4Po

5/2 673 362 668 467(−0.73) 690 302(+2.52)
35 3s3p5(3P)3d 4Fo

9/2 696 427 696 661(+0.03) 694 225(−0.32) 718 955(+3.23)
36 3s3p5(3P)3d 4Fo

7/2 699 271 699 492(+0.03) 697 016(−0.32) 721 753(+3.22)
37 3s3p5(3P)3d 4Fo

5/2 702 393 702 585(+0.03) 700 011(−0.34) 724 749(+3.18)
38 3s3p5(3P)3d 4Fo

3/2 705 124 705 430(+0.04) 702 749(−0.34) 727 481(+3.17)
39 3s3p5(3P)3d 4Do

7/2 727 570 726 123(−0.20) 751 744(+3.32)
40 3s3p5(3P)3d 4Do

1/2 728 941 727 262(−0.23) 753 127(+3.32)
41 3s3p5(3P)3d 4Do

5/2 729 333 727 681(−0.23) 753 278(+3.31)
42 3s3p5(3P)3d 4Do

3/2 729 529 727 821(−0.23) 753 654(+3.31)
43 3s3p5(3P)3d 2Fo

7/2 737 196 737 368(+0.02) 760 128(+3.11)
44 3s3p5(3P)3d 2Do

5/2 741 411 741 260(−0.02) 775 448(+4.59)
45 3s3p5(3P)3d 2Do

3/2 745 921 745 812(−0.01) 773 758(+3.73)
46 3s3p5(3P)3d 2Fo

5/2 749 519 749 382(−0.02) 766 614(+2.28)
47 3s3p5(1P)3d 2Po

1/2 759 703 760 037(−0.04) 784 164(+3.22)
48 3s3p5(1P)3d 2Po

3/2 767 418 767 867(+0.06) 792 369(+3.25)
49 3s23p3(4S)3d2(3F) 6Fo

1/2 782 254 798 032(+2.02)
50 3s23p3(4S)3d2(3F) 6Fo

3/2 782 413 798 185(+2.02)
51 3s23p3(4S)3d2(3F) 6Fo

5/2 782 765 798 471(+2.01)
52 3s23p3(4S)3d2(3F) 6Fo

7/2 783 210 798 920(+2.01)
53 3s23p3(4S)3d2(3F) 6Fo

9/2 783 811 799 568(+2.01)
54 3s23p3(4S)3d2(3F) 6Fo

11/2 784 592 800 369(+2.01)
55 3s3p5(1P)3d 2Fo

5/2 786 586 789 807(+0.41) 814 657(+3.57)
56 3s3p5(1P)3d 2Fo

7/2 790 379 793 645(+0.41) 818 926(+3.61)

4
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Table 1. (Continued.)

Configuration Term MR-MP2 NIST Del Zanna et al Aggarwal et al

57 3s23p3(4S)3d2(3P) 6Po
3/2 806 147 825 916(+2.45)

58 3s23p3(4S)3d2(3P) 6Po
5/2 806 509 826 267(+2.45)

59 3s23p3(4S)3d2(3P) 6Po
7/2 806 796 826 574(+2.45)

60 3s3p5(1P)3d 2Do
3/2 813 997 818 347(+0.53) 842 530(+3.51)

61 3s3p5(1P)3d 2Do
5/2 815 436 819 974(+0.56) 844 220(+3.53)

62 3s23p3(4S)3d2(1D) 4Do
7/2 826 951 851 605(+2.98)

63 3s23p3(4S)3d2(1D) 4Do
1/2 827 233 854 305(+3.27)

64 3s23p3(4S)3d2(1D) 4Do
5/2 827 623 852 439(+3.00)

65 3s23p3(4S)3d2(1D) 4Do
3/2 828 262 853 032(+2.99)

66 3s23p3(2D)3d2(3P) 4Po
1/2 829 640 855 413(+3.11)

67 3s23p3(2D)3d2(3P) 4Fo
3/2 830 297 857 345(+3.26)

68 3s23p3(2D)3d2(3F) 4Go
5/2 832 558 855 358(+2.74)

69 3s23p3(2D)3d2(3F) 4Go
7/2 832 568 856 456(+2.87)

70 3s23p3(2D)3d2(3P) 4Po
3/2 832 846 858 936(+3.13)

71 3s23p3(2D)3d2(3P) 4Fo
5/2 833 048 860 911(+3.34)

72 3s23p3(2D)3d2(3F) 4Go
9/2 834 705 858 475(+2.85)

73 3s23p3(2D)3d2(3F) 4Go
11/2 836 759 860 626(+2.85)

74 3s23p3(2D)3d2(3P) 4Po
5/2 836 815 862 436(+3.06)

75 3s23p3(2D)3d2(3P) 4Fo
7/2 839 827 864 873(+2.98)

76 3s23p3(2D)3d2(3P) 4Fo
9/2 842 791 868 044(+3.00)

77 3s23p3(2D)3d2(3F) 4Ho
7/2 851 673 875 111(+2.75)

78 3s23p3(2D)3d2(3F) 4Ho
9/2 852 949 876 066(+2.71)

79 3s23p3(2D)3d2(3F) 4Ho
11/2 854 465 877 503(+2.70)

80 3s23p3(2D)3d2(1D) 2Fo
7/2 855 953 883 967(+3.27)

81 3s3p5(3P)3d 2Po
1/2 858 374 864 859(+0.75) 900 482(+4.91)

82 3s23p3(2D)3d2(1D) 2Do
3/2 858 582 891 188(+3.80)

83 3s3p5(3P)3d 2Po
3/2 859 830 865 405(+0.65) 901 152(+4.81)

84 3s23p3(2D)3d2(3F) 4Go
5/2 860 015 898 342(+4.46)

negative-energy space are included (equation (5)), transition
probabilities evaluated in the Coulomb gauge approach those
evaluated in the Babushkin gauge.

4. Results and discussion

4.1. Term energies of n = 3 levels

Theoretical term energies of the excited states arising
from the 3s23p5, 3s3p6, 3s23p43d, 3s3p53d and 3s23p33d2

configurations are compared with the hitherto available
experimental data in table 1. Experimental term energies
reproduced are those compiled in the NIST Atomic Spectra
Database [46] and the assessed sets of atomic data by Del
Zanna et al [47]. None of the excited levels arising from the
3s23p33d2 configuration has been experimentally identified.

Of the computed 83 excited levels in Fe X, experimental
term energies are available only for 30 low-lying levels in
the NIST database. For these levels, the theoretical term
energies are in excellent agreement with NIST data. Theory–
experiment deviations are at the 0.01% level for all but eight
levels, where the deviations range from 0.11 to 1.15%. For
the 3s23p43d 2P3/2 and 2F5/2 levels in particular, the deviations
are significant, in the 0.29–1.15% range. We argue that these
experimental term energies adopted in the NIST database are
based on misidentified lines, resulting in the large theory–
experiment deviation. To resolve the discrepancies for these
levels, more accurate line identifications are needed. In a

recent study [47], Del Zanna et al have collected atomic data
from different sources and assessed them to provide term
energies of the 54 levels reproduced in table 1. Many of
these levels benchmarked by Del Zanna et al agree to the
0.01% level with theory, although 20 excited levels arising
from the 3s23p43d, 3s3p53d and 3s23p33d2 configurations
exhibit significant deviations, ranging from 0.32% to 1.35%.
The term energies computed by Aggarwal and Keenan
[48, 49] using a relativistic CI method are reproduced in the
last column of the table. Whereas the CI method accounts well
for the nondynamic correlation among the valence electrons
in the n = 3 shells, it fails to account for the bulk of dynamic
correlation between the core and valence electrons. Therefore,
the CI-calculated term energies deviate from experiment by
up to about 3%. In contrast, the MR-MBPT-calculated term
energies are expected to be accurate to the 0.01% level.

4.2. Transition rates and lifetimes

Transition rates in atoms and ions reflect atomic structure
and dynamics in ways that are related to the level structure,
but that also depend differently on atomic parameters. The
electric dipole (E1) operator features a dependence on the
notoriously tricky radial wavefunctions that is not tested
by levels optimized under the Ritz variation principle.
Spin-changing (intercombination) E1 transitions depend on
relativity and on electron–electron magnetic interactions
of which the Breit operator is merely an approximation,
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Table 2. E1/M1/E2/M2/E3 transition probabilities (s−1) and lifetimes τ (ms) of the states arising from the 3s23p5, 3s23p43d and 3s3p6

configurations. a(b) stands for a × 10b.

Theoretical τ (ms)

Jupper → Jlower λ(nm) Aji(s−1) Experimental τ (ms) Previous MR-MBPT

2Po
1/2 → 2Po

3/2 637.633 M1: 69.28 14.41 ± 0.14a 14.54b,c 14.43
E2: 7.27(−3) 13.64 ± 0.25b,c 14.51d 14.37e

14.33 ± 0.05f

14.2 ± 0.2g

2S1/2 → 2Po
1/2 36.597 E1: 1.26(+9) 2.7 ± 0.2(−7)h 2.34(−7)d 2.41(−7)

→ 2Po
3/2 34.610 E1: 2.89(+9) 2.3(−7)i

2.42(−7)j

4F9/2 → 4D5/2 345.650 E2: 6.90(−3) 85.7 ± 9.2k 77.3d 108.0
→4D7/2 345.435 E2: 3.50(−3) 110 ± 5l 80.2k

M1: 9.23
→ 2Po

3/2 23.937 E3: 2.22(−2)
4F7/2 → 4F9/2 1939.864 M1: 4.31 93 ± 30k 56.5d 66.49

E2: 1.95(−5) 73.0 ± 0.8m 80k

→ 4D3/2 304.525 E2: 2.28(−3) 58 ± 10n

→ 4D5/2 293.221 M1: 0.479
E2: 4.32(−3)

→ 4D7/2 293.221 M1: 7.30
E2: 3.22(−2)

→ 2Po
3/2 23.645 M2: 2.86

E3: 4.56(−2)
→ 2Po

1/2 24.556 E3: 3.79(−4)
2G9/2 → 4P5/2 1542.733 E2: 3.20(−4) 17.8 ± 3.1k 12.9d 15.27

→ 2F5/2 1142.988 E2: 9.20(−6) 16.7k

→ 2F7/2 1002.205 E2: 2.00(−4)
M1: 4.53

→ 4F5/2 415.887 E2: 8.50(−5)
→ 4F7/2 357.897 E2: 4.10(−3)

M1: 5.01
→ 4F9/2 302.151 E2: 4.49(−2)

M1: 51.59
→ 4D5/2 161.220 E2: 3.70(−4)
→ 4D7/2 161.173 E2: 1.70(−1)

M1: 3.40
→ 2Po

3/2 22.180 E3: 0.757

a Extrapolation of heavy-ion storage ring data [54].
b Electrostatic ion trap [57].
c Electrostatic ion trap [58].
d [65].
e With correction for the electron anomalous magnetic moment (EAMM).
f Extrapolation of heavy-ion storage ring data [56].
g Electron beam ion trap [62].
h Beam-foil spectroscopy [50].
i [63].
j [64].
k Electrostatic ion trap [59].
l Heavy-ion storage ring [80].
m Electrostatic ion trap [60].
n Heavy-ion storage ring [53].

and E1-forbidden transitions are sensitive to details of the
wavefunction composition. Cl-like ions feature examples of
all these cases, and since very different orders of magnitude
of level lifetimes (the inverse of the sum of all decay rates
from a given level) are involved, experiments on Cl-like
ions have employed beam-foil spectroscopy (see references
in [50, 51], synchrotron light excitation of noble gases [52],
stored ion beams [53–56], electrostatic ion traps [57–60]
and electron beam ion traps [61, 62]). Not all of these

techniques are applicable to Fe X (yet). In the following,
we discuss examples and compare their results for Fe X to
the results of our calculations. The selection of our examples
is guided by longevity; that means, we do not discuss levels
that readily decay as in a hydrogenlike ion, but only those
E1 decays that connect the lowest displaced term (3s3p6 2S)
to the 3s23p5 2Po ground term, the E1-forbidden transition
within the ground term, and intercombination or E1-forbidden
decays of 3s23p43d levels. For a level scheme, see figure 1.
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Figure 1. Lowest levels of Fe X and dominant decays of long-lived
levels listed in table 2.

Table 2 displays theoretical E1/M1/E2/M2/E3 decay rates
and lifetimes of the excited levels arising from the 3s23p5,
3s3p6 and 3s23p43d configurations in Fe X.

For the lowest excited level, 3s3p6 2S, there is good
agreement of our calculations with both the level lifetime
and the branch fraction of the decays with the results of the
only (beam-foil) data set available [50]. Quite a number
of calculations have addressed this line doublet in the Cl
isoelectronic sequence (for references, see [50, 51, 63–65]).
The largest differences are evident at the low end of the
sequence, which is outside of the scope of this report.

Within the ground term, a magnetic dipole transition (with
a very weak, less than 0.1%, electric quadrupole admixture)
connects the J = 1/2 and J = 3/2 fine structure levels.
The corresponding solar corona line has been dubbed the
‘red iron line’. Because of the fundamental interest in
such prominent solar coronal features, the transition rate
has frequently been calculated (see time line in figure 2),
but most of the early calculations have failed to reproduce
the experimental fine structure splitting (known from the
wavelength), and whatever energy splitting calculated was
then ‘semiempirically adjusted’ by replacing it with the
experimental data. The results of such a procedure all lie
close to each other, but are of little intrinsic merit beyond
pointing out in which range the correct value should be
expected. In contrast, the results of the few early ab initio
calculations scatter notably from the expected range of results,
mostly reflecting the shortcomings of the fine structure interval
calculation. The corresponding transition rate in Fe XIV (the
‘green iron line’) has been measured with utmost precision
[66, 67], but the experimental situation is much less suitable
for precise measurements in Fe X, because of the roughly
630 nm wavelength which is in a range where typical bialkali
photomultipliers have a poor quantum efficiency and thus a
poor signal-to-noise ratio. The early result of experiments
with an electrostatic ion trap [57–59] deviated well beyond

13 191817161514

Lifetime (ms)

Fe X

Krueger & Czyzak 1966

Warner 1968

Smith & Wiese 1973

Kastner 1976

Kafatos & Lynch 1980

Eidelsberg et al 1981

Huang et al 1983

Kaufman & Sugar 1986

Biémont et al 1988

Bhatia & Doschek 1995

Dong et al 1999

Moehs et al 1999

Träbert et al 2002 extrapol

Träbert et al 2004 extrapol

Del Zanna 2004

Brenner et al 2009

Ishikawa et al 2009

Ishikawa et al 2009
with EAMM

Figure 2. Time line of results for the level lifetime of the ground
term fine structure level in Fe X. Open circles: theory, full circles
with error bars: experiment. References: Krueger and Czyzak [69];
Warner [70]; Smith and Wiese [71]; Kastner [72]; Kafatos and
Lynch [73]; Eidelsberg et al [74]; Huang [75]; Kaufman and Sugar
[76]; Biémont et al [77]; Bhatia and Doschek [78]; Dong et al [79];
Moehs and Church [58]; Träbert et al [54, 55]; Träbert et al [56];
Del Zanna [47]; Brenner et al [62]; Ishikawa et al (this work). The
vertical line marks the expected value based on experimental
transition energy and basic model line strength S = 4/3.

(This figure is in colour only in the electronic version)

the stated error bar from the expected lifetime value range.
Measurements at a heavy-ion storage ring were tried [53] , but
failed to see the transition; instead similar experiments were
then conducted on the isoelectronic spectra of Co, Ni and
Cu [54–56] and the results extrapolated to Fe X, assuming a
constant line strength S. The first measurements allowed such
an extrapolation to Fe X with an uncertainty of about 1%,
which after improved experiments on Co could be narrowed
down to some 0.4%. Very recently the electron beam ion trap
[61] at Heidelberg has yielded a direct measurement result with
an uncertainty of slightly more than 1% [62]. There is excellent
agreement of all of the latter experiments with our present
calculational result, including the QED correction of the M1
transition operator for the anomalous magnetic moment of the
bound electron [66–68]. It is perhaps amusing to see that our
extensive calculation is in good agreement with the result of the
practical recipe of determining such M1 transition rates, from
a line strength S (in this case close to the nonrelativistic single
configuration limit where Racah algebra indicates S = 4/3)
and the third power of the transition energy. However, our
algorithms appear to be the first which can reliably achieve
this feat without resorting to semiempirical adjustments. This
quality is necessary for testing the validity of atomic structure
calculations that are to be applied also to those cases which
are more complex.

By far most of the levels depicted in figure 1 have lifetimes
of a few nanoseconds or less. Exceptions are the upper one of
the fine structure levels of the ground term and three 3s23p43d
levels that because of their high J values have no E1 decay
channels. Theoretical predictions on the lifetimes of such
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high-J 3d levels have been extremely sparse (although levels
with ground-state transitions have been covered at several
occasions), and several calculations have missed to include
the E3 decay branch which in our calculations shows to
be significant, especially for the 3s23p43d 2G9/2 level. For
measurements with an electrostatic ion trap, the experimenters
have made their own calculations [59]. The results are in the
same ball park as ours, and they agree more or less with
their own measurements. However, in detail, our results
differ from theirs significantly. Our calculations agree instead
with experimental findings from another set of experiments
that used a heavy-ion storage ring. That technique has the
advantage of a single ion species being stored at a time, which
has the potential of cleaner measurements than those using
an electrostatic ion trap. The 3s23p43d 4F7/2 level has been
remeasured at another electrostatic ion trap [60], with a result
in between the calculations cited in our table 2.

Overall, we see our lifetime predictions that span a range
of eight orders of magnitude well corroborated by experiments.
The agreement is best in those cases for which experiment is
most highly developed.

5. Conclusion

Relativistic MR-MBPT calculations for the strongly
correlated system have been carried out to benchmark
theoretical accuracy against high-resolution spectroscopic
transitions. Term energies of the hitherto unidentified/poorly
characterized excited levels of the chlorinelike Fe X are
successfully computed with an accuracy on the order of
0.01%. Detailed comparisons of the calculated decay
rates and lifetimes of a number of excited levels are made
with experiment to critically evaluate recent experiments.
The many-body theoretical method has achieved predictive
capability in the spectroscopic study of strongly correlated
multiple open-shell systems as a valuable theoretical tool for
EUV, VUV and x-ray spectroscopy.
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